A CPU socket or CPU slot is a connector on a computer's motherboard that accepts a CPU and forms an electrical interface with it. As of 2007, most desktop and server computers, particularly those based on the Intel x86 architecture, include socketed processors.
Most CPU-sockets interfaces are based on the pin grid array (PGA) architecture, in which short, stiff pins on the underside of the processor package mate with holes in the socket. To minimize the risk of bent pins, zero insertion force (ZIF) sockets allow the processor to be inserted without any resistance, then grip the pins firmly to ensure a reliable contact after a lever is flipped.
As of 2007, land grid array (LGA) sockets are becoming increasingly popular, with several current and upcoming socket designs using this scheme. With LGA sockets, the socket contains pins that make contact with pads or lands on the bottom of the processor package.
In the late 1990s, many x86 processors fit into slots, rather than sockets. CPU slots are single-edged connectors similar to expansion slots, into which a PCB holding a processor is inserted. Slotted CPU packages offered two advantages: L2 cache memory could be upgraded by installing an additional chip onto the processor PCB, and processor insertion and removal was often easier. However, slotted packages require longer traces between the CPU and chipset, and therefore became unsuitable as clock speeds passed 500 MHz. Slots were abandoned with the introduction of AMD's Socket A and Intel's Socket 370.
About Me
Custom Search
Friday, October 17, 2008
motherboard
A motherboard is the central or primary printed circuit board (PCB) making up a complex electronic system, such as a modern computer or laptop. It is also known as a mainboard, baseboard, system board, planar board, or, on Apple computers, a logic board, and is sometimes abbreviated casually as mobo.[1]
Most motherboards produced today are designed for so-called IBM-compatible computers, which held over 96% of the global personal computer market in 2005.[2] Motherboards for IBM-compatible computers are specifically covered in the PC motherboard article.
A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane also contains the central processing unit and other subsystems such as real time clock, and some peripheral interfaces.
A typical desktop computer is built with the microprocessor, main memory, and other essential components on the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices are typically attached to the motherboard via edge connectors and cables, although in modern computers it is increasingly common to integrate these "peripherals" into the motherboard.
All of the basic circuitry and components required for a computer to function are onboard the motherboard or are connected with a cable. The most important component on a motherboard is the chipset. It often consists of two components or chips known as the Northbridge and Southbridge, though they may also be integrated into a single component. These chips determine, to an extent, the features and capabilities of the motherboard.
Most motherboards produced today are designed for so-called IBM-compatible computers, which held over 96% of the global personal computer market in 2005.[2] Motherboards for IBM-compatible computers are specifically covered in the PC motherboard article.
A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane also contains the central processing unit and other subsystems such as real time clock, and some peripheral interfaces.
A typical desktop computer is built with the microprocessor, main memory, and other essential components on the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices are typically attached to the motherboard via edge connectors and cables, although in modern computers it is increasingly common to integrate these "peripherals" into the motherboard.
All of the basic circuitry and components required for a computer to function are onboard the motherboard or are connected with a cable. The most important component on a motherboard is the chipset. It often consists of two components or chips known as the Northbridge and Southbridge, though they may also be integrated into a single component. These chips determine, to an extent, the features and capabilities of the motherboard.
Computer
A device that receives, processes, and presents information. The two basic types of computers are analog and digital. Although generally not regarded as such, the most prevalent computer is the simple mechanical analog computer, in which gears, levers, ratchets, and pawls perform mathematical operations—for example, the speedometer and the watt-hour meter (used to measure accumulated electrical usage). The general public has become much more aware of the digital computer with the rapid proliferation of the hand-held calculator and a large variety of intelligent devices and especially with exposure to the Internet and the World Wide Web. See also Calculators; Internet; World Wide Web.
An analog computer uses inputs that are proportional to the instantaneous value of variable quantities, combines these inputs in a predetermined way, and produces outputs that are a continuously varying function of the inputs and the processing. These outputs are then displayed or connected to another device to cause action, as in the case of a speed governor or other control device. Small electronic analog computers are frequently used as components in control systems. If the analog computer is built solely for one purpose, it is termed a special-purpose electronic analog computer. In any analog computer the key concepts involve special versus general-purpose computer designs, and the technology utilized to construct the computer itself, mechanical or electronic. See also Analog computer.
In contrast, a digital computer uses symbolic representations of its variables. The arithmetic unit is constructed to follow the rules of one (or more) number systems. Further, the digital computer uses individual discrete states to represent the digits of the number system chosen. A digital computer can easily store and manipulate numbers, letters, images, sounds, or graphical information represented by a symbolic code. Through the use of the stored program, the digital computer achieves a degree of flexibility unequaled by any other computing or data-processing device.
The advent of the relatively inexpensive and readily available personal computer, and the combination of the computer and communications, such as by the use of networks, have dramatically expanded computer applications. The most common application now is probably text and word processing, followed by electronic mail. See also Electronic mail; Local-area networks; Microcomputer; Word processing.
Computers have begun to meet the barrier imposed by the speed of light in achieving higher speeds. This has led to research and development in the areas of parallel computers (in order to accomplish more in parallel rather than by serial computation) and distributed computers (taking advantage of network connections to spread the work around, thus achieving more parallelism). Continuing demand for more processing power has led to significant changes in computer hardware and software architectures, both to increase the speed of basic operations and to reduce the overall processing time. See also Computer systems architecture; Concurrent processing; Distributed systems (computers); Multiprocessing; Supercomputer.
An analog computer uses inputs that are proportional to the instantaneous value of variable quantities, combines these inputs in a predetermined way, and produces outputs that are a continuously varying function of the inputs and the processing. These outputs are then displayed or connected to another device to cause action, as in the case of a speed governor or other control device. Small electronic analog computers are frequently used as components in control systems. If the analog computer is built solely for one purpose, it is termed a special-purpose electronic analog computer. In any analog computer the key concepts involve special versus general-purpose computer designs, and the technology utilized to construct the computer itself, mechanical or electronic. See also Analog computer.
In contrast, a digital computer uses symbolic representations of its variables. The arithmetic unit is constructed to follow the rules of one (or more) number systems. Further, the digital computer uses individual discrete states to represent the digits of the number system chosen. A digital computer can easily store and manipulate numbers, letters, images, sounds, or graphical information represented by a symbolic code. Through the use of the stored program, the digital computer achieves a degree of flexibility unequaled by any other computing or data-processing device.
The advent of the relatively inexpensive and readily available personal computer, and the combination of the computer and communications, such as by the use of networks, have dramatically expanded computer applications. The most common application now is probably text and word processing, followed by electronic mail. See also Electronic mail; Local-area networks; Microcomputer; Word processing.
Computers have begun to meet the barrier imposed by the speed of light in achieving higher speeds. This has led to research and development in the areas of parallel computers (in order to accomplish more in parallel rather than by serial computation) and distributed computers (taking advantage of network connections to spread the work around, thus achieving more parallelism). Continuing demand for more processing power has led to significant changes in computer hardware and software architectures, both to increase the speed of basic operations and to reduce the overall processing time. See also Computer systems architecture; Concurrent processing; Distributed systems (computers); Multiprocessing; Supercomputer.
Subscribe to:
Comments (Atom)
